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T. Schorner34, M. Schröder8, M. Schumacher3, C. Schwick8, W.G. Scott20, R. Seuster14, T.G. Shears8, B.C. Shen4,
C.H. Shepherd-Themistocleous8, P. Sherwood15, G.P. Siroli2, A. Sittler27, A. Skuja17, A.M. Smith8, G.A. Snow17,
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Abstract. The spectral functions of the vector current and the axial-vector current have been measured
in hadronic τ decays using the OPAL detector at LEP. Within the framework of the Operator Product
Expansion a simultaneous determination of the strong coupling constant αs, the non-perturbative operators
of dimension 6 and 8 and of the gluon condensate has been performed. Different perturbative descriptions
have been compared to the data. The Contour Improved Fixed Order Perturbation Theory gives αs(m2

τ ) =
0.348 ± 0.009exp ± 0.019theo at the τ -mass scale and αs(m2

Z) = 0.1219 ± 0.0010exp ± 0.0017theo at the Z0-
mass scale. The values obtained for αs(m2

Z) using Fixed Order Perturbation Theory or Renormalon Chain
Resummation are 2.3% and 4.1% smaller, respectively. The ‘running’ of the strong coupling between
s0 ' 1.3GeV2 and s0 = m2

τ has been tested from direct fits to the integrated differential hadronic decay
rate Rτ (s0). A test of the saturation of QCD sum rules at the τ -mass scale has been performed.
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1 Introduction

The τ lepton is the only lepton heavy enough to decay into
hadrons. A comparison of the inclusive hadronic decay
rate of the τ with QCD predictions can give fundamen-
tal parameters of the theory. The energy regime governed
by mτ = 1.777 GeV is regarded as a compromise region
between the low and high energy regimes where non-per-
turbative and perturbative QCD dominate, respectively.
In fact, τ decay is probably the lowest-energy process from
which the coupling constant αs can be cleanly extracted
[1–5] without large complications from non-perturbative

a and at TRIUMF, Vancouver, Canada V6T 2A3
b and Royal Society University Research Fellow
c and Institute of Nuclear Research, Debrecen, Hungary
d and Department of Experimental Physics, Lajos Kossuth
University, Debrecen, Hungary
e on leave of absence from the University of Freiburg

effects, while the perturbative expansion still converges
well.

In this analysis the most important quantity to mea-
sure is the strong coupling constant αs(m2

τ ). The ‘running’
of αs, for energy scales smaller thanmτ , can be tested with
the integrated differential decay rate into hadrons dRτ/ds,
where

√
s denotes the mass of the final-state hadronic sys-

tem and Rτ = Γ (τ → hντ )/Γ (τ → eνeντ ) is the hadronic
decay width of the tau normalized to the decay width of
the tau going into electron and neutrinos. This is possible
as the hadronic decay rate Rτ (s0) depends on the strong
coupling constant αs(s0) at the scale s0 only, where s0
denotes the upper integration limit for the integral over
dRτ/ds.

The measured αs(m2
τ ) can be transformed into a value

for αs(m2
Z) through the renormalization group equation

(β-function). In doing that, the relative error of αs(s) de-
creases like the decrease of αs(s) itself. After the evolution
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to the Z0 mass the strong coupling is reduced to αs(m2
Z) '

(1/3)αs(m2
τ ) and its error is reduced to ∆αs(m2

Z) ' (1/9)
∆αs(m2

τ ). Hence, the significance of this measurement com-
pares favorably with other αs(m2

Z) determination methods
[6].

Inclusive observables like the hadronic decay rate Rτ

(s0) have been calculated in perturbative QCD to O(α3
s ).

Some remaining theoretical uncertainties due to correc-
tions in powers of 1/m2

τ can be avoided if the differential
decay rate dRτ/ds is measured and compared to the the-
ory by means of its spectral moments which are weighted
integrals over dRτ/ds. As a result, the power corrections
and αs can be simultaneously determined from a fit. While
Rτ (m2

τ ) can be precisely determined from the leptonic
branching ratios and the τ lifetime, dRτ/ds involves a
measurement of the invariant mass of the hadronic sys-
tem. Thus, an exclusive reconstruction of all hadronic final
states in τ decays is necessary.

In this paper an analysis is presented using data taken
with the OPAL detector at LEP at energies within ±3 GeV
of the Z0 peak. The analysis includes measurements of
the differential decay rates dRτ,V/A/ds for vector (V) and
axial-vector (A) decays and their respective spectral mo-
ments. Using these moments, fits of QCD predictions are
made extracting the strong coupling constant αs(m2

τ ) and
parameters of the non-perturbative expansion, most no-
tably the contributions of dimension 6 and 8 operators.
The measurement is based on a set of spectral moments
defined by the same weighting functions used by ALEPH
[7,8] and CLEO [9].

The differential decay rates themselves can be re-ex-
pressed in terms of spectral functions of the vector and
axial-vector current, v(s) and a(s). This measurement
serves for saturation tests of QCD sum rules at the τ -mass
scale by comparing the experimental values of the sum
rules with chiral QCD predictions. Furthermore, by eval-
uating the moment integrals between zero and s0, where√
s0 is an energy smaller than mτ , the ‘running’ of αs is

tested in a single experiment.
The theoretical framework for inclusive observables

from hadronic τ decays is described in Sect. 2. After a
short description of the OPAL detector in Sect. 3 the selec-
tion of hadronic τ decays is described in Sect. 4. In Sect. 5
the unfolding procedure is described. The measured and
unfolded spectra are discussed in Sect. 6 followed by a de-
scription of the systematic uncertainties in Sect. 7. Sect. 8
contains the results for the moments of Rτ and for the
spectral functions. The extraction of the strong coupling
constant and of the power corrections, from fits to the mo-
ments of Rτ (s0), is discussed in Sects. 9 and 10. Section 11
describes the test of the ‘running’ of αs. The application
of QCD sum rules to the spectral functions is discussed in
Sect. 12. Finally, the results are summarized in Sect. 13.

2 Theoretical description of hadronic τ
decays

QCD predictions of inclusive observables in hadronic τ de-
cays have been calculated including perturbative and non-

perturbative contributions. These observables can be re-
lated to the differential, non-strange hadronic decay width,
normalized to the decay width of τ− → e−νeντ [1–5]:

dRτ,V/A

ds
= 12πSEW|Vud|2 1

m2
τ

(
1 − s

m2
τ

)2

(1)

×
[(

1 + 2
s

m2
τ

)
ImΠ(1)

V/A(s) + ImΠ(0)
V/A(s)

]
,

where s denotes the square of the invariant mass of the
hadronic system and the labels V and A stand for the vec-
tor and axial-vector contributions, respectively1. SEW =
1.0194 is an electroweak correction term [10] and |Vud|2 =
0.9512 ± 0.0008 is the squared CKM weak mixing matrix
element [11]. The functions ImΠ are proportional to the
spectral functions for the non-strange currents with an-
gular momenta J = 1 and J = 0 as indicated by the
superscripts. The latter spectral function vanishes for the
vector current, since no scalar particle has been observed
in τ decays, while ImΠ0

A is given by the pion pole, assum-
ing that the pion is the only pseudo-scalar final-state in
non-strange τ decays:

ImΠ0
A(s) =

m2
τ

12πSEW|Vud|2
(

1 − s

m2
τ

)−2

× B(τ → πντ )
B(τ → eνeντ )

1
Nπ

dNπ

ds
, (2)

with Nπ being the number of selected τ decays into pions.
The spectral functions for the vector and the axial-vector
currents are defined in (22).

Within the framework of QCD weighted integrals or
moments of (1) have been calculated [12]:

Rkl
τ,V/A(s0) =

s0∫
0

ds
(

1 − s

s0

)k (
s

m2
τ

)l dRτ,V/A

ds
. (3)

The moments are used to compare the experiment with
theory. In what follows, ten moments for kl = 00, 10, 11,
12, 13 for V and A are used. The first momentsR00

τ,V/A(m2
τ )

are the total normalized decay rates of the τ into vector
and axial-vector mesons given by (1) integrated over s. In
the näıve parton model these two rates are identical and
add up to the number of colors. Since only non-strange
currents are considered in this work the näıve expectation
has to be multiplied by |Vud|2. Including the perturbative
and non-perturbative contributions, equation (3) is usu-
ally written as [12]:

Rkl
τ,V/A(s0) =

3
2
SEW|Vud|2

(
1 + δ′kl

EW(s0) + δkl
pert(s0)

+
∑

D=2,4,6,...

δD,kl
V/A(s0)


 , (4)

1 The notation V/A will be used throughout the paper to
indicate vector and axial-vector contributions, respectively.
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where SEW is the same multiplicative correction as in (1)
and δ′kl

EW are additive electroweak corrections. The lat-
ter has been calculated for kl = 00 only [13] yielding
δ′00
EW(m2

τ ) = 5
12

α(m2
τ )

π = 0.0010. In the higher moments it
is assumed that this term scales with the integral over the
weight functions in equations (1) and (3) like the O(αs)
correction:

δ′kl
EW(s0) =

Rkl
τ,näıve(s0)

R00
τ,näıve(m2

τ )
δ′00
EW(m2

τ ). (5)

Therefore the δ′kl
EW contribution to the moments is small

(∼ 0.1 %) and the uncertainty due to this term is neglected
in the analysis. The other factors in (4) are explained in
more detail below.

2.1 Perturbative correction terms δkl
pert

The perturbative term δkl
pert is known to third order in

αs[4] and partly known to fourth order in αs[12]. For kl =
00 and s0 = m2

τ it is:

δ00pert(m
2
τ ) =

αs(m2
τ )

π
+ 5.2023

α2
s (m

2
τ )

π2 + 26.366
α3

s (m
2
τ )

π3

+(78.003 +K4)
α4

s (m
2
τ )

π4 +O
(
α5

s (m
2
τ )
)
. (6)

This result which truncates after the fourth power of αs is
refered to as Fixed Order Perturbation Theory (FOPT).
Different attempts have been made to obtain a resum-
mation of some of the higher order terms. The resum-
mation scheme proposed in [12] compensates for higher
order logarithmic terms in αs by expressing the δkl

pert(s0)
terms by contour-integrals in the complex s-plane along
the circle |s| = s0 and solving numerically for each αs(s)
along the circle (Contour-Improved Perturbation Theory,
CIPT). The different αs(s) values on the circle can be cal-
culated from αs(m2

τ ) by solving numerically the β-func-
tion:

da
dlns

= β(a) = −β1a
2 − β2a

3 − β3a
4 − β4a

5 +O(a6), (7)

with a = αs(s)/π, β1 = 9/4, β2 = 4, βMS
3 = 10.0599

and βMS
4 = 47.2306 [14] for 3 quark flavors. The last two

coefficients are renormalization scheme dependent and the
quoted values belong to the MS-scheme. The third method
considered in this paper resums the leading term of the
β-function to all orders in αs by inserting so-called Renor-
malon Chains (RCPT) [15–18]. The fixed-order corrected
version (up to the third order in αs) quoted in the lower
portion of Table 6 in reference [16] is used in the fit.

One of the leading theoretical uncertainties for FOPT
and CIPT comes from the unknown O

(
α4

s
)

correction K4.
Expanding the perturbative corrections in terms of CIPT
gives:

1 + δkl
pert(s0) =

∑
n≥0

KnA
kl
n (s0), (8)

where the functions Akl
n are the weighted contour inte-

grals. For kl = 00 the function is:

A00
n (s0) =

1
2πi

∮
|s|=s0

ds
s

(
αs(−s)
π

)n

(9)

×
(

2
s0
m2

τ

− 2
s30
m6

τ

+
s40
m8

τ

− 2
s

m2
τ

+ 2
s3

m6
τ

− s4

m8
τ

)
.

In the MS-scheme and for three flavors the first four terms
are: K0 = K1 = 1, K2 = 1.63982, K3 = 6.37101 [19–23].
A bold guess for K4 gives K4 ≈ K3(K3/K2) ≈ 25 [12].
Similar estimates are given in [24,25]. A central value of
K4 = 25 is used, with an uncertainty of ∆K4 = ±50 in
the perturbative expansions for CIPT and FOPT.

Another major theoretical uncertainty is the choice of
renormalization scale µ in the αs dependence of δkl

pert(s0).
The scale ratio ζ = µ2/s0 is varied from 0.4 to 2.0 in all
three models described above as suggested in [5].

The choice of the renormalization scheme (RS) can also
alter the result. Following the prescription in [5] the third
coefficient of the β-function βRS

3 is varied between 0.0 and
2.0βMS

3 in order to obtain the uncertainty due to different
renormalization schemes.

2.2 Power correction terms δD,kl
V/A

In the framework of the Operator Product Expansion
(OPE) [26] the non-perturbative contributions are expres-
sed as a power series in terms of 1/m2

τ absorbing the long-
distance dynamics into vacuum matrix elements 〈O(µ̃)〉
[27–29,4]. Thus, they can be written as sums over power
corrections of different dimensions, D:

δkl
non-pert,V/A(s0) =

∑
D=2,4,6,...

δD,kl
V/A(s0). (10)

In contrast to the perturbative part described in the pre-
vious section the power corrections differ for the vector
and the axial-vector currents.

In (10) the correction of dimension D = 2 is a mass
correction term and therefore belongs to the perturbative
part. TheD = 4 term is the first term with major non-per-
turbative contributions, namely the quark condensates for
the three light flavors 〈ψψ〉u,d,s and the gluon condensate
〈αs

π GG〉. If one neglects the small s-dependence of the
power corrections, the δD,kl

V/A terms can be expressed for all
kl values by a product of the same (vector/axial-vector)
operator of dimension D (or the power correction for kl =
00) and a simple integral over the kl-dependent weight-
functions [12]:

δD,kl
V/A(s0) = 8π2

D=2 D=4 D=6 D=8 D=10 kl


1
1
0
0
0

0
m2

τ

s0

−1
0
0

−3
−3

−m2
τ

s0

1
0

−2

−2 − 3m2
τ

s0

3
m2

τ

s0

−1

0

−2m2
τ

s0

2 + 3m2
τ

s0

−3

−m2
τ

s0




00

10

11

12

13
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×
∑

dim O = D

CV/A(µ̃) 〈O(µ̃)〉
mD

τ

, (11)

where each entry in the matrix belongs to a particular
dimension D and a particular moment kl, as denoted by
the first row and the last column. The parameter µ̃ is
an arbitrary factorization scale which separates the long-
distance non-perturbative effects, which are absorbed in
the vacuum matrix elements 〈O(µ̃)〉, from short-distance
perturbative effects which are incorporated in the Wilson
coefficients CV/A(µ̃) [12].

This approach is used for the dimension D = 6 and
D = 8 terms, taking δ

6/8,00
V/A as free parameters. For the

dimension D = 2 and D = 4 terms the full s-dependence
is taken into account for the theoretical description of the
moments [12]. The least precisely known D = 4 param-
eter, the gluon condensate, which is known only to 50 %
[4], is also taken as a free parameter in the fit, while the
D = 2 term is calculated from the quark masses and the
strong coupling.

Terms with dimensions higher then 8 are neglected in
this analysis as they do not contribute to R00

τ,V/A as can
be seen from (11).

3 OPAL detector

A detailed description of the OPAL detector can be found
in [30]. A brief description of the features relevant for this
analysis follows.

A high-precision silicon microvertex detector surrounds
the beam pipe. It covers the angular region of | cos θ| ≤ 0.8
and provides tracking information in the r-ϕ (and z after
1992) directions2 [31,32]. Charged particles are tracked in
a central detector enclosed inside a solenoid that provides
a uniform axial magnetic field of 0.435 T. The central de-
tector consists of three drift chambers: a high-resolution
vertex detector, the large-volume jet chamber and the z-
chambers. The jet chamber records the momentum and
energy loss of charged particles over 98 % of the solid angle
and the z-chambers are used to improve the track position
measurement in the z direction [33].

Outside the solenoid coil are scintillation counters
which measure the time-of-flight from the interaction re-
gion and aid in the rejection of cosmic events. Next is
the electromagnetic calorimeter (ECAL) that is divided
into a barrel (| cos θ| < 0.82) and two endcap (0.81 <
| cos θ| < 0.98) sections. The barrel section is composed of
9440 lead-glass blocks pointing to the interaction region.
Each block subtends approximately 10 × 10 cm2 with a
depth of 24.6 radiation lengths. The two endcap sections
consist of dome-shaped arrays, each having 1132 lead-glass
blocks, mounted coaxial with the beam, where each block
covers 9.2 × 9.2 cm2 with a typical depth of 22 radiation

2 In the OPAL coordinate system the x-axis is horizontal and
points to the center of LEP. The y-axis is vertical and the z-
axis is in the e− beam direction. The angle θ is defined relative
to the z-axis.

lengths. The hadron calorimeter (HCAL) is beyond the
electromagnetic calorimeter and instrumented with layers
of limited streamer tubes in the iron of the solenoid mag-
net return yoke. In the region | cos θ| < 0.81 this detector
typically has a depth of 8 interaction lengths. The hadron
calorimeter is covered by the muon chamber system, com-
posed of four layers of drift chambers in the barrel region
and four layers of limited streamer tubes in the endcap
region.

4 Event selection and reconstruction
of τ decays

OPAL data collected from 1990 to 1995 is used in this
analysis. The data were taken within ±3 GeV of the Z0

resonance. The Monte Carlo samples used in this anal-
ysis consist of 600 000 τ -pair events generated at

√
s =

mZ with Koralz 4.0 [34]. Their decays were modelled
with Tauola 2.4 [35] and then processed through the
Geant [36] OPAL detector simulation [37]. The non-τ
background Monte Carlo samples consist of 1 000 000 qq
events generated with Jetset 7.4 [38], 800 000 Bhabha
events generated with Radbab 2.0 [39,40], 600 000 µ-pair
events generated with Koralz 4.0 [34] and 800 000 events
from two-photon processes generated with Vermaseren
1.01 [41,42].

4.1 Selection of τ -lepton candidates

The standard τ selection procedure as described in [43]
begins with the rejection of cosmic rays, multi-hadronic
events and events from two-photon processes. Cosmic rays
are rejected by the time-of-flight information of the tracks.
Multihadrons are removed from the sample by requiring
two narrow jets (cones with a half opening angle of 35 ◦)
and up to six tracks in the event. The events from two-
photon processes are eliminated by allowing an acollinear-
ity angle of up to 15 ◦ between the two jets.

The remaining event sample contains tau pairs,
Bhabha events, and muon pairs. Events with an energy
deposit of more than 0.8 × 2Ebeam are identified as Bhab-
has. An event is classified as a muon pair if two tracks
carry energy of more than 0.6×2Ebeam and if both tracks
have at least two hits in the muon chambers and almost
no energy deposit in the ECAL. The remaining events are
classified as τ pairs if the polar angle of the total cone mo-
mentum calculated from track momenta and ECAL clus-
ters satisfies | cos θ| < 0.95 for both cones.

After this selection both cones in each event are treated
independently. The non-tau background is further reduced
by requiring one or three tracks in each cone with a total
charge of plus or minus one. A total of 297 988 τ can-
didates survive these selection criteria with an estimated
non-τ background fraction of 3.9 %.
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4.2 Identification of τ -decay modes

A Maximum Likelihood selection as used in previous pub-
lications (see e.g. [44]) is applied to the data and the Mon-
te Carlo samples to distinguish between the following de-
cay modes: τ− → ντX−, where X− is one of e−νe, µ−νµ,
π−, π−π0, π−2π0, π−3π0, 2π−π+, 2π−π+π0, 2π−π+2π0.
The charge and parity conjugated modes are implicitly as-
sumed for τ+ → ντX+ decays. Fourteen reference distri-
butions are used to distinguish between the different one-
prong channels and five reference distributions are used in
the three-prong case. Decays with charged kaons instead
of pions are suppressed by a cut on the specific energy
loss dE/dx in the drift chamber. Decays into electrons
are distinguished from the other modes by the ratio E/p
of the ECAL energy associated with the cone over the
track momentum, and the dE/dx information. Muons are
identified by the number of hits in the muon chambers
and the outermost HCAL layers. The different hadronic
decay modes with zero, one, two or three neutral pions are
separated by using the number of reconstructed photons
in the ECAL (see Sect. 4.3).

The decay channels used in this analysis are the three
non-strange one-prong modes with at least one neutral
pion: ππ0, π2π0 and π3π0, and the three non-strange three-
prong modes: 3π, 3ππ0, 3π2π0. A total of 65899 τ candi-
dates are selected3 in these channels with an estimated
background fraction of 26.6 % including misidentified τ
decays and the remaining non-τ background fraction of
0.8 %. Details about the treatment of the cross-talk be-
tween the signal channels due to misidentified τ decays
are subject to Sects. 5 and 6.

The most important observable for the discrimination
between vector and axial-vector channels is the number
of neutral pions in a cone. A new method to reconstruct
neutral pions in τ decays has been employed, which is
described in the following section.

4.3 Reconstruction of neutral pions

Neutral pions are identified by their decay into two pho-
tons. Since photons are only detected in the ECAL, an
iterative fit of photon energies and directions to the ob-
served energy deposits in the ECAL blocks is performed.

The energy deposition in an ECAL block can be ex-
pressed as a function of the photon energy and the pho-
ton direction. This is done by parameterizing the inte-
grated energy density of an electromagnetic shower for
each ECAL block. In the barrel region of the ECAL where
the blocks have a quasi-pointing geometry only lateral
shower profiles need to be parameterized. They can be
approximated by the sum of two exponential distributions
representing core and halo components [45]. For the end-
cap region, where the blocks are oriented parallel to the
beam, lateral and longitudinal profiles are important. The
longitudinal profile is reasonably described by the gamma
distribution [11].

3 For the decay mode ππ0 a cut on | cos θ| < 0.9 is used in
order to reduce the background from Bhabha events.

The mean energy deposit of a minimum ionizing par-
ticle is subtracted from all ECAL blocks hit by a charged
particle. The fit then finds the smallest number of pho-
tons needed to explain the measured energies and provides
their corresponding three-vectors.

Energy depositions from hadronic interactions of
charged pions in the ECAL are accounted for by assigning
photon candidates which are close to track intersections
with the ECAL to the track. The maximum angle allowed
between a photon candidate and a track to which the pho-
ton candidate can be assigned depends on the polar angle
of the track and varies between 1.2 ◦ and 1.7 ◦ in the barrel
region and between 2.0 ◦ and 3.4 ◦ in the endcap region.
A photon candidate close to a track is still classified as a
photon if the total energy of photon candidates assigned
to this track exceeds the measured track momentum.

All possible two-photon combinations are then used
to find π0 candidates. The combination resulting in the
largest number of π0 candidates with an average invariant
mass deviation from the π0 mass less than 1.5σ is selected.
The error on the invariant two-photon mass, σ, is calcu-
lated from the error matrices of the above photon fit. The
π0 four-momenta are then calculated from the energies
and directions of the photon pairs of the selected com-
bination after a constrained fit to the π0 mass. Figure 1
shows the photon-pair mass for selected ππ0 candidates
before the π0-mass constraint.

For all the one-prong modes a minimum energy of
0.7 GeV for each reconstructed π0 is required while Eπ0 >
2.0 GeV is required in the three-prong modes to suppress
fake π0’s introduced by the energy deposition of charged
pions in the ECAL.

The granularity of the ECAL allows the reconstruc-
tion of both photons from a π0 only if its energy is below
12 GeV. The π0’s with larger energies have photons which
are merged in the ECAL. Therefore all the photon can-
didates with energies above this value are considered to
be π0’s and their momentum is calculated from the recon-
structed energy corrected by the mass of the π0.

5 Unfolding procedure

The Monte Carlo predictions for the measured spectra
and their background contributions are corrected with the
most recent constrained branching ratios of the τ given in
[11]. Effects due to limited detector resolution and effi-
ciency are accounted for by a regularized unfolding tech-
nique [46].

To unfold measured distributions in s (the squared
mass of the hadronic final state) the detector simulation
is used to create response matrices which map the gener-
ated distribution in x ≡ strue to a y ≡ smeas distribution
one would measure including all detector effects. The fol-
lowing convolution integral describes the general relation
between a true distribution f(x) and a measured distri-
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pj(x) =
1
6

×




z3 z = (x − tj )/d tj ≤ x < tj+1

(1 + 3(1 + z(1 − z))z) z = (x − tj+1)/d tj+1 ≤ x < tj+2

(1 + 3(1 + z(1 − z))(1 − z)) z = (x − tj+2)/d tj+2 ≤ x < tj+3

(1 − z)3 z = (x − tj+3)/d tj+3 ≤ x < tj+4

0 otherwise

, (18)

bution g(y):

g(y) =

xmax∫
xmin

dxA(y, x) ε(x) f(x) + b(y), (12)

where A(y, x) is the detector response function, b(y) de-
notes the background distribution, and ε(x) is the selec-
tion efficiency. Equation (12) can be simplified to a matrix
equation of the form:

g = A · f + b. (13)

This is performed in two steps. First, the true distribution
f(x) is parameterized with a set of m parameters fj and
m basis functions pj(x) which are defined in (18):

f(x) =
m∑

j=1

fj fMC(x) pj(x), (14)

with fMC(x) being the generated Monte Carlo distribu-
tion. By defining:

Aj(y) =

xmax∫
xmin

dx ε(x) fMC(x)A(y, x) pj(x), (15)

(12) takes the form:

g(y) =
m∑

j=1

fj Aj(y) + b(y). (16)

In the second step, g(y), b(y) and Aj(y) are represented
by n bins:

gi =

yi∫
yi−1

dy g(y); bi =

yi∫
yi−1

dy b(y);

Aij =

yi∫
yi−1

dy Aj(y).

(17)

The basis functions pj(x) used in equations (14) and (15)
are chosen as cubic B-splines and thus have the following
form (see (18) on top of the page), where d = (xmax −
xmin)/(m−3) is the distance between adjacent knots tk =
xmin + (k− 4) d for k = 1, . . . ,m− 1 knots and m splines.

The coefficient vector f = {fj} is now observed in a
fit to the data bins gi, and the unfolded result can be ob-
tained with (14). This particular choice of basis functions
and normalization leads to the simple prediction fj = 1

for all j if the Monte Carlo generated distribution and the
unfolded result are identical.

In certain cases unfolding produces results with un-
physical behavior. Statistically insignificant components
of the fitted coefficient vector f can lead to large oscilla-
tions of the unfolded distribution. Therefore the unfolding
needs to be modified by a regularization step which sup-
presses the statistically insignificant parts of the solution.
This is achieved by applying a smooth damping function
to the unfolded result. The magnitude of the fluctuations
is measured by the total curvature r(f) of the function
f(x)/fMC(x):

r(f) =

xmax∫
xmin

dx
[(

d2

dx2

f(x)
fMC(x)

)]2

=

xmax∫
xmin

dx


 m∑

j=1

fj
d2

dx2 pj(x)




2

= fT · C · f , (19)

where C is a constant, symmetric, positive semidefinite
matrix obtained from the second derivatives of the basis
functions pj . The regularized result is now obtained by
adding the total curvature r(f) weighted with a regular-
ization parameter ρ to the χ2 in the fit and minimizing
the sum:

χ2
reg(f) = χ2(f) +

1
2
ρ r(f). (20)

The final unfolded distribution in s is given by weighting
the Monte Carlo distribution in strue with the regularized
coefficient vector f obtained from the fit (14).

This method is bias-free as long as the detector sim-
ulation is correct for all s and is independent of the used
Monte Carlo distributions provided that only the statisti-
cally insignificant components of the fitted contributions
are damped. Possible biases due to the detector simulation
are accounted for in the systematic errors as described in
Sect. 7. The correct choice of the regularization parame-
ter ρ can be tested in the following way:

a) The coefficients fj , which are correlated and have in
general different errors, can be transformed into a set
of independent parameters aj which have unit variance
and are sorted with the regularization measure ρ r(f)
in order of decreasing significance [46]. All aj with j >
n(ρ), where n(ρ) is the number of effective coefficients
remaining after damping with the parameter ρ, have
to be consistent with zero.

b) Furthermore the χ2-probability of the fit without the
regularization term r(f) should increase for the regu-
larized coefficient vector f .
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Fig. 1. The γγ-mass in the ππ0 channel for decays with two re-
constructed photons with a minimal energy of 0.5GeV. OPAL
data is shown as data points; the total Monte Carlo predic-
tion is given by the open histogram and the shaded histogram
denotes the τ and non-τ background

The regularization parameter is chosen according to these
criteria.

The background, in a particular one-prong (three-
prong) channel, consists mainly of misidentified other one-
prong (three-prong) τ decays, introducing correlations be-
tween the spectra. In order to provide a proper treatment
of the correlations, the three one-prong (three-prong) chan-
nels are unfolded simultaneously. In addition to the three
detector response matrices for the three one-prong (three-
prong) signal modes, six more detector response matrices
are used, mapping the Monte Carlo generated distribu-
tion in strue of a background channel to the background
part introduced by this channel in the smeas distribution
of a signal channel as correlated background. Non-τ back-
ground and other misidentified τ decays are treated as
uncorrelated background bi as described above.

6 Discussion of the measured spectra

The selection efficiencies and background fractions from si-
multaneously unfolded channels (correlated background)
and other τ - and non-τ -background sources (uncorrelated
background) are listed in Table 1. Figures 2 and 3 show
the measured smeas distributions of the six channels used
in this analysis in comparison to the fitted signal after
the regularized unfolding, and the Monte Carlo predic-
tions. The correlated background (light gray areas in the
figures) is obtained together with the signal by the simul-
taneous unfolding procedure from the fits to the observed
data points. The fractions and the shapes of the intro-
duced backgrounds from neighboring channels are there-

fore correlated with the fractions and shapes of the signal
channels.

The 3π spectrum shows a significant deviation from
the shape predicted by the Monte Carlo (the dashed his-
togram) as has been observed in previous analyses of the
3π decay current [47]. There is also a slight deviation on
the left side of the peak in the ππ0 channel and in the
upper tail region. The other modes are statistically con-
sistent with their Monte Carlo predictions.

The χ2 values for the one-prong and three-prong fits
after the regularization step are χ2

1−pr./d.o.f. = 94.0/109
and χ2

3−pr./d.o.f = 71.4/69 leading to the χ2-probabilities
0.85 and 0.40, respectively.

The unfolded distributions of the measured spectra are
shown in Fig. 4.

The plotted data points are strongly correlated due to
the unfolding procedure. The deviations from the Monte
Carlo prediction seen in Figs. 2 and 3 are still present af-
ter the unfolding, most prominently in the ππ0 and the 3π
channel. The enhancement in the upper tail (see Figs. 2
(b) and 4 (a)) of the ππ0 distribution can be explained
within the Kühn–Santamaria model [48] by enlarging the
fraction of ρ(1450)’s and ρ(1700)’s in the ρ decay ampli-
tude. A similar correction to the three-pion current, mod-
elled as a Breit–Wigner decay chain a1 → ρπ → 3π [48]
in the Monte Carlo, does not account for the observed
discrepancy.

7 Systematic uncertainties

Possible origins for systematic effects on the reconstructed
value for the squared hadronic mass, smeas, come from the
uncertainty in the energy scale for reconstructed photons
and the uncertainty in the momentum scale for tracks,
while the wrong choice of the regularization parameter ρ
in the unfolding can distort the unfolded distributions.

The energy resolution can be tested by measuring the
invariant mass of the two photons from π0 decays. A sys-
tematic shift in the observed mass in the data compared
to the detector simulation can be translated into a scale
factor for the reconstructed photon energies. Deviations of
(0.5±0.9) MeV for mπ0 have been observed between data
and Monte Carlo (Fig. 1). This corresponds to an energy
scale factor of 1.004 ± 0.007. The energies of the recon-
structed photons in the Monte Carlo samples are varied
by ±0.7 % in order to estimate the systematic error due
to this effect4.

The uncertainty in the momentum of the tracks have
been studied using µ pairs. The Monte Carlo is corrected
for observed deviations between data and Monte Carlo in
the mean and the width of the momentum distribution.
The momenta and the momentum resolution of all tracks
in the Monte Carlo samples are scaled due to the uncer-

4 Since the invariant two-photon mass depends also on the
angle between the two photons, this energy scale factor ac-
counts for systematic uncertainties in the energy resolution
and the angular resolution of the ECAL.
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Fig. 2a–d. The measured smeas spectra for 1-prong decays. Plots a and b are the ππ0 channel, c and d are the π2π0 and π3π0

modes, respectively. The points denote OPAL data (statistical errors only). The open histograms show the fitted spectra after
the regularized unfolding, refolded into detector space. The background contributions from simultaneously unfolded channels
(correlated background) are shown as light grey areas while the background from other sources (uncorrelated background) is
represented in dark grey

Table 1. Efficiencies, background fractions and total number of selected τ decays

channel efficiency correlated
background

uncorrelated
background

selected
decays

ππ0 (28.7 ± 0.1)% (7.7 ± 0.2)% (7.9 ± 0.1)% 32316
π2π0 (18.8 ± 0.1)% (45.0 ± 0.6)% (8.4 ± 0.1)% 13814
π3π0 (8.0 ± 0.2)% (70.0 ± 2.2)% (11.4 ± 0.5)% 1738
3π (34.6 ± 0.1)% (9.7 ± 0.3)% (3.8 ± 0.1)% 14321
3ππ0 (11.0 ± 0.1)% (21.3 ± 1.0)% (6.1 ± 0.3)% 2455
3π2π0 (8.3 ± 0.4)% (82.3 ± 2.9)% (7.1 ± 0.5)% 1255
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Fig. 3a–c. The measured smeas spectra for 3-prong decays. Plot
a is the 3π channel, b and c are the 3ππ0 and 3π2π0 modes, res-
pectively. The points denote OPAL data (statistical errors only).
The open histograms show the fitted spectra after the regularized
unfolding, refolded into detector space. The background contri-
butions from simultaneously unfolded channels (correlated back-
ground) are shown as light grey areas while the background from
other sources (uncorrelated background) is represented in dark
grey

tainties in these corrections, thus leading to the quoted
systematic errors.

The damping parameter ρ in the regularization step of
the unfolding procedure is calculated from the number of
effectively remaining spline coefficients after the regular-
ization. This number is chosen so that the test conditions
a) and b) given in Sect. 5 are satisfied. The default value
(16 effective splines from 48 total splines for the 1-prong
fit and 16 effective splines from 36 total splines for the
3-prong fit) is varied by ±4 for both fits, where the range
is derived from Monte Carlo tests of the unfolding proce-
dure: the tests consist of unfolding fake data samples in
the ρ → ππ0 channel. The mass and the width of the ρ in
the fake data samples at the generator level are different
from the values used in the standard Monte Carlo which is
used to create the response matrix. The allowed range of
the damping parameter is then determined by comparing

the unfolded fake data samples with their generator level
distributions for different choices of the damping param-
eter, for which the test conditions a) and b) are satisfied.
Within this range the unfolded distributions reproduce the
mass spectrum of the modified ρ without biases towards
the generator distribution of the standard Monte Carlo.
The uncertainty due to the variation of the damping pa-
rameter is added as a systematic error on the unfolded
results.

Uncertainties of statistical nature from the errors on
the branching ratios (see Table 2), the limited statistics of
signal and background Monte Carlo samples, and on the
efficiencies are incorporated in the unfolding procedure by
adding them in quadrature to the statistical errors on the
data.

Systematic effects related to photon and π0 detection
efficiency are already covered to a large extent by the sys-



The OPAL Collaboration: Measurement of the strong coupling constant αs 581

Table 2. Branching ratios for the hadron modes and lepton channels. Shown are
the fitted values from the Particle Data Group [11] and the contributing weights
for the vector and axial-vector current. Channels marked with MC are ‘generator-
level’ Monte Carlo channels included in the spectra. Negative weights are used to
subtract inclusively measured contributions from the wrong current

τ → ντX B[%] wV wA comment
eνe 17.83 ± 0.08 – –
µνµ 17.35 ± 0.10 – –
ππ0 25.24 ± 0.16 1.0 0.0
3ππ0 4.26 ± 0.09 1.0 0.0 including ωπ and ωππ0

π3π0 1.14 ± 0.14 1.0 0.0
π 11.31 ± 0.15 0.0 1.0
3π 9.26 ± 0.12 0.0 1.0 3h − 2Kπ − K2π including ωπ

π2π0 9.27 ± 0.14 0.0 1.0
3π2π0 0.50 ± 0.05 0.0 1.0 including ωππ0 and ηππ0

5π 0.075 ± 0.007 0.0 1.0 MC
π4π0 0.12 ± 0.06 0.0 1.0 MC
3π3π0 0.11 ± 0.06 1.0 0.0 MC
5ππ0 0.022 ± 0.005 1.0 0.0 MC
KK0 0.16 ± 0.03 1.0 0.0 MC
2Kπ 0.10 ± 0.03 0.5 ± 0.5 0.5 ± 0.5 MC
2K0π 0.10 ± 0.02 0.5 ± 0.5 0.5 ± 0.5 MC
KK0π0 0.14 ± 0.03 0.5 ± 0.5 0.5 ± 0.5 MC
ωπ 0.21 ± 0.01 1.0 −0.2 MC excluding 3ππ0

ωππ0 0.046 ± 0.007 −0.25 1.0 excluding 3π2π0

ηππ0 0.17 ± 0.03 1.0 −0.24 MC
Xstrange 2.67 ± 0.14 – –

tematic errors quoted above. This has been verified by
comparing the number of reconstructed π0’s (before ap-
plying cuts on this number) for each decay channel for
data and Monte Carlo for which no systematic deviation
has been found.

8 Results

8.1 Moments of Rτ

The unfolded spectra of the hadronic modes shown in
Fig. 4 are normalized to their branching fractions and
summed up to the vector and axial-vector spectra with
their appropriate weights:

Rkl
τ,V/A(s0) =

s0∫
0

ds
(

1 − s

s0

)k (
s

m2
τ

)l ∑
hV/A

×B(τ → hV/Aντ )
B(τ → eνeντ )

wV/A

NV/A

dNV/A

ds
, (21)

where NV/A is the number of taus that decay into the
hadron hV/A plus neutrino, and wV/A denotes the ap-
propriate weight of the hadronic mode to the vector or
axial-vector current. The branching ratios of the hadronic

modes (and the lepton channels), together with their con-
tributing weights for the vector and axial-vector spectra,
are summarized in Table 2.

The hadronic modes ωπ, ωππ0 and ηππ0 involve de-
cays of ω’s and η’s, and do not conserve isospin symmetry,
since their decay can occur via the electromagnetic in-
teraction. Therefore, the unfolded distributions in the 3π
mode, which is considered to belong to the axial-vector
current, and in the 3ππ0 mode, which belongs to the vec-
tor current, are contaminated by decays not belonging to
the assigned currents (e.g. ωπ → 3π), and thus need to be
corrected. Since ∼ 71 % of the 3π2π0 mode consist of ωππ0

decays, this channel is used for the ωππ0 corrections. Cor-
rections for the other ω and η modes are made with the
Monte Carlo. Decay modes which are not reconstructed
from the data have also to be included in the total vec-
tor and axial-vector spectra. Their distributions are taken
from the Monte Carlo. The 2Kπ modes contribute to both
classes to an unknown amount. A weight of (50 ± 50) %
is used for both currents and a correlation of −100 % be-
tween the vector and the axial-vector weights is assumed.
The errors assigned to Monte Carlo spectra are taken to
be ±100 %, in order to take a possible mismodelling of the
Monte Carlo into account.

The moments Rkl
V/A are given in Table 3. The errors

on the moments are subdivided into statistical uncertain-
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Fig. 4a–f. The unfolded strue spectra. Shown are the three vector channels (left) and the three axial-vector channels (right)
together with the Monte Carlo prediction. There are strong correlations between the data points due to the unfolding. The
plots a,d,e are the unfolded spectra of plots a,c,d in Fig. 2 and the plots b,c,f are the unfolded spectra of the plots a,b,c in
Fig. 3. The error bars include statistical and systematic uncertainties
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Table 3. The measured moments Rkl
V/A, for

kl = 00, 10, 11, 12, 13. The errors shown represent statis-
tical and systematic uncertainties

moment kl Rkl
V total error Rkl

A total error
00 1.764 ±0.016 1.720 ±0.017
10 1.264 ±0.012 1.240 ±0.013
11 0.2980 ±0.0034 0.2510 ±0.0032
12 0.0942 ±0.0019 0.1090 ±0.0019
13 0.0403 ±0.0016 0.0518 ±0.0013

ties due to the data statistics, the uncertainties comming
from the branching ratio errors, and systematic uncertain-
ties induced by the limited Monte Carlo statistics and the
variations of the energy scale, the momentum scale, and
the regularization parameter (Table 4). Correlations be-
tween the moments are given in Table 5.

8.2 Spectral functions

The vector and axial-vector spectral functions are given
by inverting (1):

v/a(s) = 2π ImΠ(1)
V/A(s)

= m2
τ

[
6SEW|Vud|2

(
1 − s

m2
τ

)2(
1 + 2

s

m2
τ

)]−1

×
∑
hV/A

B(τ → hV/Aντ )
B(τ → eνeντ )

wV/A

NV/A

dNV/A

ds
, (22)

where the sum is performed over hadronic final states
hV/A with angular momentum J = 1.

The spectral functions (and their correlations) are
shown in Fig. 5 together with the flat näıve parton model
prediction vnäıve(s) = anäıve(s) = 1/2 and the prediction
of perturbative QCD (massless) for αs(m2

Z) = 0.122 which
increases the näıve prediction by ≈ 10 %. The spectral
functions agree within errors with those of references [49,
8]. As a result of the regularized unfolding, the bin-to-
bin correlations are of the order of +80 % (−50 %) for
bin distances of 0.1 GeV2 (≈ 1 GeV2). The correlation be-
tween vector and axial-vector spectral function varies from
−60 % to +60 %.

Figure 6 shows the difference and the sum of the two
measured spectral functions. The function v(s)−a(s) should
vanish in the limit of perturbative, massless QCD. The
deviation from this prediction, e.g. due to the ρ and a1
resonances, indicates the large sensitivity of this distribu-
tion to non-perturbative effects. The QCD prediction for
v(s) + a(s) which is ≈ 10 % above the näıve expectation
v(s) + a(s) = 1 as in Fig. 5 gives a reasonable description
of the region s > 1 GeV2. The structure due to the narrow
resonances in the region below s ' 1 GeV2 is however not
described by perturbative QCD.

9 Measurement of the strong coupling αs

Since the perturbative expansions for vector and axial-
vector currents are identical while the non-perturbative
parts have opposite sign but the same order of magni-
tude for both currents, two different fits are used for the
extraction of αs and the power corrections, respectively.
The sums of vector and axial-vector moments are most
sensitive to perturbative QCD and are used for the mea-
surement of αs (fit 1) while the separate moments of both
currents are used to obtain the power corrections (fit 2).
In addition to the moments listed in Table 3 it is possible
to include the measurements of the τ lifetime ττ and the
branching ratio Bµ = B(τ → µνµντ ) in fit 1 since each of
them can be used to predict the total hadronic decay rate
of the τ lepton:

Rτ (ττ ) =
1
Γe

1
ττ

− 1 − Γµ

Γe
, (23)

Rτ (Bµ) =
Γµ

Γe

1
Bµ

− 1 − Γµ

Γe
. (24)

Both equations assume lepton universality so that the fol-
lowing equation holds:

Bµ = Be
Γµ

Γe
, (25)

with Γµ

Γe
= 0.9726 [10] and Γe = 4.0329 · 10−13 GeV [50,

10]. The non-strange decay rate of the τ lepton is then
obtained by subtracting Rτ,s = Bs/Be = 0.150 ± 0.008
[11] from the weighted average Rτ (Bµ, ττ ) of Rτ (ττ ) and
Rτ (Bµ)5. In principle the electron branching ratio Be
could also be used to determine Rτ but this has a 96 %
correlation with Rτ from the hadronic modes due to the
correlations of the constrained branching ratios in [11].

Using the world average ττ = (291.0 ± 1.5) fs and the
fitted value Bµ = 0.1735 ± 0.0010 [11] one gets:

Rτ (Bµ, ττ ) −Rτ,s = 3.485 ± 0.023. (26)

From the vector and axial-vector decay rates in Table 3
one gets the following value:

Rτ,V +Rτ,A = 3.484 ± 0.024. (27)

In the first fit, four parameters are used to describe
the five moments, leaving one degree of freedom for the fit:
the strong coupling αs(m2

τ ), the gluon condensate 〈αs
π GG〉

and the dimension 6 and 8 contributions to the kl = 00
moments δ6V+A, δ8V+A. The second fit requires six param-
eters to predict ten moments (four degrees of freedom):
αs(m2

τ ), 〈αs
π GG〉 and the power corrections δ6V, δ8V, δ6A

and δ8A. The power corrections from the two fits can be
compared via the following relation:

δD
V+A =

1
2
(
δD
V + δD

A
)
. (28)

5 Rτ,s is subtracted from Rτ , since the induced dependency
on the mass of the strange quark would lead to a larger uncer-
tainty in the fits if Rτ would be used instead.
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Fig. 5. The vector and axial-vector spec-
tral functions. Shown are the sums of
all contributing channels as data points
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the perturbative, massless QCD predic-
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Further inputs for both fits are the quark masses for the
three light quarks mu,d,s

mu = (8.7 ± 1.5) MeV, md = (15.4 ± 1.5) MeV,

ms = (270 ± 30) MeV,
(29)

and the quark condensates 〈ψψ〉u,d,s = −µ3
u,d,s, with

µu = µd = (189 ± 7) MeV, µs = (160 ± 10) MeV. (30)

The values are taken from [4]. The error matrix of the
moments is calculated from the experimental errors on

the moments and their correlations (Tables 3 and 5) and
the theoretical error matrix calculated from the errors on
the quark-masses and quark-condensates. The results from
the fit to the sums of vector and axial-vector moments is
given in Table 6. The quoted errors are subdivided into a
statistical error due to the data statistics, the uncertainty
induced by the errors on the branching ratios, an exper-
imental systematic error from the Monte Carlo statistics
and the unfolding procedure, and a theoretical error in-
cluding the uncertainties on quark masses, the variation
of the O(α4

s ) coefficient, the renormalization scheme de-
pendence, and the renormalization scale uncertainty. The
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Table 4. Statistical and systematic uncertainties of the measured moments. The upper
(lower) portion of the table contains the result for the vector (axial-vector) current

systematic errors
kl data stat. branching ratios MC stat. E scale p scale regularization
00 – ±0.016 – – – –
10 ±0.005 ±0.010 ±0.004 ±0.004 ±0.001 ±0.001

V 11 ±0.0012 ±0.0031 ±0.0008 ±0.0005 ±0.0002 ±0.0000
12 ±0.0006 ±0.0016 ±0.0004 ±0.0007 ±0.0000 ±0.0001
13 ±0.0008 ±0.0011 ±0.0005 ±0.0005 ±0.0001 ±0.0001
00 – ±0.017 – – – –
10 ±0.004 ±0.012 ±0.002 ±0.002 ±0.002 ±0.003

A 11 ±0.0010 ±0.0029 ±0.0007 ±0.0003 ±0.0002 ±0.0004
12 ±0.0008 ±0.0015 ±0.0005 ±0.0006 ±0.0001 ±0.0005
13 ±0.0007 ±0.0008 ±0.0004 ±0.0004 ±0.0002 ±0.0003

Table 5. Correlations between the measured moments Rkl
V/A in percent. The left (right) table gives the

correlations between the moments of the vector (axial-vector) current; the table in the middle shows the
correlations between the moments of different currents

V 00 10 11 12
10 72
11 87 72
12 74 14 72
13 53 −18 37 90

A\V 00 10 11 12 13
00 2 9 0 −8 −8
10 9 4 0 4 8
11 −5 −2 −7 −7 −4
12 −8 3 0 −12 −17
13 −10 8 3 −16 −26

A 00 10 11 12
10 85
11 79 56
12 64 22 85
13 51 2 63 94
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Table 6. The result for αs(m2
τ ) and the non-perturbative parameters from the fit to the sums

of vector and axial-vector moments. Shown are the values for the three different descriptions
of the perturbative part of the moments (see text). The given errors correspond to the data
statistics, the uncertainty due to the errors on the branching ratios B, a systematic error from
the Monte Carlo statistics, the energy scale, the momentum scale, and the unfolding, and a
total theoretical uncertainty

contributing errors
theory observable value data B syst. theo. χ2/d.o.f.

αs(m2
τ ) 0.348 ±0.002 ±0.009 ±0.002 ±0.019

〈αs
π

GG〉/GeV4 −0.003 ±0.007 ±0.007 ±0.006 ±0.005
CIPT

δ6
V+A 0.0012 ±0.0034 ±0.0033 ±0.0029 ±0.0006

0.16/1

δ8
V+A −0.0010 ±0.0024 ±0.0016 ±0.0015 ±0.0003

αs(m2
τ ) 0.324 ±0.001 ±0.006 ±0.002 ±0.013

〈αs
π

GG〉/GeV4 0.014 ±0.007 ±0.006 ±0.005 ±0.013
FOPT

δ6
V+A 0.0028 ±0.0034 ±0.0034 ±0.0030 ±0.0068

0.17/1

δ8
V+A −0.0015 ±0.0024 ±0.0016 ±0.0014 ±0.0019

αs(m2
τ ) 0.306 ±0.001 ±0.005 ±0.001 ±0.011

〈αs
π

GG〉/GeV4 −0.002 ±0.007 ±0.007 ±0.005 ±0.002
RCPT

δ6
V+A −0.0047 ±0.0036 ±0.0040 ±0.0032 ±0.0011

0.07/1

δ8
V+A −0.0001 ±0.0024 ±0.0017 ±0.0015 ±0.0003

strong coupling is most sensitive to the kl = 00 moment,
and therefore the dominant contribution to the experi-
mental uncertainty on αs comes from the uncertainties on
the branching ratios.

All three theories lead to similar χ2 values (see Table 6)
but the spread in the fitted values for αs(m2

τ ) exceeds the
total uncertainties by a factor of two. A similar spread
of the values for αs(m2

τ ) from the three models has also
been observed in [51,8], where RCPT has led to the lowest
value and CIPT to the largest value in agreement with our
results (Table 6).

The differences in the statistical and systematic er-
rors on αs are induced by the scaling of the relative er-
ror with αs and thus are compatible for the three fits.
The theoretical uncertainties should also obey this scal-
ing behavior: here the fits for FOPT and CIPT only in-
clude the uncertainty on the unknown K4 coefficient and
hence cannot be compared to the RCPT result. Further-
more the uncertainty due to the variation of the renor-
malization scheme vanishes for RCPT. The impact on αs
from the various theoretical error sources is listed in Ta-
ble 7. The given errors correspond to the spread of the
fitted values of αs in fit 1 due to the unknown O

(
α4

s
)

dependence K4 = 25 ± 50, the choice of renormalization
scale 0.4 ≤ µ2/m2

τ ≤ 2.0, the variation of the renormal-
ization scheme parameterized with the third coefficient of
the β-function 0.0 ≤ βRS

3 /βMS
3 ≤ 2.0, and the evolution of

αs(m2
τ ) to the Z0-mass scale.

Although the total theoretical uncertainties on αs are
compatible for all three theories there is a major difference
between FOPT and the two other models: the FOPT fit
leads to a significant larger dependency of the non-pertur-
bative parameters 〈αs

π GG〉 and δ
6/8
V+A on the theoretical

uncertainties than CIPT and RCPT. The dominant ef-
fect comes from the variation of the renormalization scale
µ2. The statistical and systematic uncertainties on the
power corrections are very similar for all three theories,
agreeing with expectation. Figure 7 shows a comparison
of Rτ,V(s0)+Rτ,A(s0) as predicted from the three theories
using the fit results at s0 = m2

τ with the data. The Con-
tour Improved prediction is consistent with the data from
the τ -mass scale down to s0 ≈ 1 GeV2 while FOPT and
RCPT tend to predict too large values below s0 ≈ 2 GeV2.

9.1 Evolution of αs from mτ to mZ

The value of the strong coupling at the mass scale of the
τ lepton can be evolved up to the mass scale of the Z0.
This is done by solving the four-loop β-function given
by (7) numerically in small steps from m2

τ to m2
Z ap-

plying a three-loop matching condition [60] at the flavor
thresholds for mc(mc) = (1.30±0.06) GeV and mb(mb) =
(4.13 ± 0.06) GeV [52]. The evolution procedure induces
an additional error of ±0.0003 [52] on the strong coupling
at the Z0 mass. Using the CIPT result for αs(m2

τ ) and
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Table 7. The theoretical uncertainties on the strong coupling constant. The errors
correspond to the full spread of the fitted αs values in fit 1 due to the variation of the
parameters listed in the first column

∆αs(m2
τ ) ∆αs(m2

Z)

error source CIPT FOPT RCPT CIPT FOPT RCPT

−25 ≤ K4 ≤ 75 ±0.012 ±0.006 – ±0.0013 ±0.0007 –

0.4 ≤ µ2/m2
τ ≤ 2.0 ±0.006 ±0.009 ±0.011 ±0.0005 ±0.0009 ±0.0015

0.0 ≤ βRS
3 /βMS

3 ≤ 2.0 ±0.015 ±0.009 ±0.000 ±0.0009 ±0.0005 ±0.0005

evolution – – – ±0.0003 ±0.0003 ±0.0003

Table 8. The fit result for αs and the power corrections from the combined fit to vector and
axial-vector moments. The given errors correspond to the data statistics, the uncertainty due
to the errors on the branching ratios B, a systematic error from the Monte Carlo statistics,
the energy scale, the momentum scale, and the unfolding, and a total theoretical uncertainty

contributing errors
theory observable value data B syst. theo. χ2/d.o.f.

αs(m2
τ ) 0.347 ±0.001 ±0.012 ±0.002 ±0.019

〈αs
π

GG〉/GeV4 0.001 ±0.003 ±0.006 ±0.003 ±0.004

δ6
V 0.0256 ±0.0017 ±0.0024 ±0.0017 ±0.0006

CIPT
δ8
V −0.0080 ±0.0010 ±0.0007 ±0.0005 ±0.0002

0.63/4

δ6
A −0.0197 ±0.0016 ±0.0022 ±0.0019 ±0.0010

δ8
A 0.0041 ±0.0012 ±0.0013 ±0.0008 ±0.0002

αs(m2
τ ) 0.323 ±0.001 ±0.008 ±0.002 ±0.014

〈αs
π

GG〉/GeV4 0.017 ±0.003 ±0.004 ±0.003 ±0.010

δ6
V 0.0271 ±0.0017 ±0.0025 ±0.0018 ±0.0056

FOPT
δ8
V −0.0085 ±0.0010 ±0.0007 ±0.0005 ±0.0012

0.62/4

δ6
A −0.0183 ±0.0016 ±0.0023 ±0.0019 ±0.0052

δ8
A 0.0036 ±0.0011 ±0.0012 ±0.0008 ±0.0011

αs(m2
τ ) 0.305 ±0.001 ±0.007 ±0.001 ±0.011

〈αs
π

GG〉/GeV4 0.002 ±0.003 ±0.005 ±0.003 ±0.001

δ6
V 0.0202 ±0.0018 ±0.0033 ±0.0018 ±0.0009

RCPT
δ8
V −0.0075 ±0.0010 ±0.0008 ±0.0005 ±0.0002

0.61/4

δ6
A −0.0252 ±0.0017 ±0.0032 ±0.0020 ±0.0006

δ8
A 0.0047 ±0.0012 ±0.0013 ±0.0008 ±0.0001
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Table 9. Correlations between the QCD parameters from the
fit to the moments of the vector and axial-vector current in
percent. The given numbers are taken from the CIPT fit result

αs(m2
τ )

〈
αs
π

GG
〉

δ6
V δ6

A δ8
V〈

αs
π

GG
〉

−57

δ6
V −55 99

δ6
A −61 96 96

δ8
V 41 −92 −90 −84

δ8
A 42 −87 −86 −77 89

mZ = 91.187 GeV the following value is obtained:

αs(m2
Z) = 0.1219 ± 0.0010exp ± 0.0017theo ± 0.0003evol.

(31)
The FOPT fit gives

αs(m2
Z) = 0.1191 ± 0.0008exp ± 0.0013theo ± 0.0003evol.

(32)
Finally RCPT gives:

αs(m2
Z) = 0.1169 ± 0.0007exp ± 0.0015theo ± 0.0003evol.

(33)
The different contributions to the theoretical uncertainties
are listed in Table 7. The results are in good agreement
with the value obtained from fits to combined electroweak
measurements at LEP and SLD [53]:

αs(m2
Z) = 0.120 ± 0.003. (34)

10 Measurement of dimension 6 and 8
operators

The results from fit 2 where the separate moments of the
vector current and axial-vector current are used are given
in Table 8. In contrast to αs where the error is domi-
nated by the theoretical uncertainties, the power correc-
tions are almost independent of the theoretical uncertain-
ties for CIPT and RCPT. As mentioned in Sect. 9, this is
not the case for the FOPT fit which leads to theoretical
errors of the order of (or even larger than) the experimen-
tal errors. Due to the correlated unfolding of vector and
axial-vector spectra a strong positive correlation between
the power corrections of the vector and axial vector cur-
rent of the same dimension is observed. The power cor-
rections of different dimension but for the same current
are anti-correlated. All correlations of the fit parameters
for CIPT are summarized in Table 9. The fitted values of
the strong coupling constant in both fits are in excellent
agreement for all three models. The experimental error on
αs from this fit is larger than in fit 1 as the additional

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3
s0 (GeV2)

R
τ,

V
+

A
(s

0)

OPAL

 CIPT

 RCPT

 FOPT

 Unfolded OPAL Data

s0 (GeV2)

T
he

or
y 

/ D
at

a
0.9

1

1.1

1 1.5 2 2.5 3

Fig. 7. The non-strange hadronic decay rate of the τ lep-
ton Rτ,V(s0) + Rτ,A(s0) versus the upper integration limit s0.
The points in the upper plot denote OPAL data; the dashed,
dashed-dotted and dotted curves represent the theoretical pre-
dictions of the three theories with the results from the fit to
the moments at s0 = m2

τ used as input. The lower plot shows
the three theories normalized to the data. The three sets of
dashed, dashed-dotted and dotted curves indicate central val-
ues and total experimental errors for each of the three theories.
The errors on the data are shown as solid curves

-7

-6

-5

-4

-3

-2

-1

0

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

δ6
V (%)

δ6 A
 (

%
)

OPAL

Fig. 8. The power corrections of dimension 6 to Rτ,V/A. Shown
are the one and two standard deviation contours of the cor-
related result for the vector and axial-vector current (CIPT)
including experimental and theoretical uncertainties. The solid
line indicates the theoretical prediction given in [4]



The OPAL Collaboration: Measurement of the strong coupling constant αs 589

information from the τ lifetime and the branching ratio
B(τ → µνµντ ) is omitted. Using (28), the separate and
total power corrections are also in good agreement for all
three models. As in fit 1 all three theories give similar χ2

values in the fit to the exclusive moments. The theoretical
uncertainties behave similarly in fit 1 and fit 2. The sum
of all power corrections δnon-pert,V/A and δnon-pert,V+A to
Rτ,V/A and Rτ,V +Rτ,A including the dimension 2 quark-
mass correction and the dimension 4 correction obtained
from the fitted gluon condensate are:

0.0172 ± 0.0026 CIPT
δnon-pert,V = 0.0187 ± 0.0054 FOPT (35)

0.0124 ± 0.0033 RCPT,

−0.0219 ± 0.0026 CIPT
δnon-pert,A = −0.0204 ± 0.0050 FOPT (36)

−0.0266 ± 0.0032 RCPT,

−0.0024 ± 0.0025 CIPT
δnon-pert,V+A = −0.0009 ± 0.0051 FOPT (37)

−0.0071 ± 0.0031 RCPT,

where the errors include experimental and theoretical un-
certainties. Thus all three theories lead to non-perturba-
tive corrections to Rτ,V (Rτ,A) of the order 1.6 % (−2.3 %),
while a large cancellation of both contributions leads to a
total non-perturbative correction to Rτ,V +Rτ,A which is
compatible with zero and therefore allows a precise mea-
surement of the strong coupling constant in fit 1. The
numbers in Table 8 can be compared to the estimates
given in [4]:

〈αs

π
GG〉/GeV4 = 0.02 ± 0.01,

δ6V = 0.024 ± 0.013, (38)
δ6A = −0.038 ± 0.020,

δ8V/A ' −0.0001.

Only the power corrections of dimension 8 seem to be un-
derestimated, while the other estimates are in good agree-
ment with the measured values. Figure 8 shows the two
power corrections of dimension 6 (CIPT) together with
the theoretical prediction given in [4].

Similar values for the power corrections and their cor-
relations from τ decays have been observed by ALEPH [8].
From e+e− → hadrons data the power corrections for the
vector current have been determined in [54] in agreement
with the results from τ data.

11 Test of the ‘running’ of αs

The fit to the sums of vector and axial-vector moments
(fit 1) can be extended to lower values of s0, thus giv-
ing a correlated measurement of the strong coupling at

0.3

0.35

0.4

0.45

0.5

0.55

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5

s0 (GeV2)

α s(
s 0)

OPAL

 β-fct fit CIPT

 β-fct fit FOPT

 β-fct fit RCPT

Fig. 9. The ‘running’ of the strong coupling. The three sets of
αs values are shown as data points. The error bars include sta-
tistical and systematic uncertainties. The dashed curves repre-
sent the predictions of the 4-loop β-function obtained from
fits to the three sets of αs values not including the values
αs(1.3GeV2). The solid lines depict the errors from the fits

different scales. Four equidistant values for s0 between
1.3 GeV2 and m2

τ are used. In addition to the five mo-
ments at s0 = m2

τ the integrated differential decay rate
R00

τ,V(s0)+R00
τ,A(s0) for each additional s0 value is included

in the fit (see Fig. 7).
For the extraction of the ‘running’ of αs the number

of fit parameters is increased to include the strong cou-
pling αs(s0) for each s0 value below m2

τ . The result can
be examined with the four-loop β-function. This is shown
in Fig. 9, where the β-function has been refitted for all
three sets of αs values. The values at s0 = 1.3 GeV2 were
not included in the fit. A comparison of these values with
the predicted ‘running’ shows good agreement in case of
CIPT, while a weaker ‘running’ as predicted by the β-
function is preferred by the FOPT and the RCPT values.

Figures 7 and 9 can be regarded as tests of the validity
of the OPE for s0 values below m2

τ . It has been questioned
if the definition of Rτ (s0) is still valid in this region [4],
since the endpoint s = s0 is no longer suppressed by the
(1−s/m2

τ )2 term in front of the spectral function (see (1)).
By defining the hadronic decay rate for a hypothetical τ ′
with a mass of mτ ′ =

√
s0 and inserting mτ ′ for mτ in (1)

one gets [8]:

Rτ ′,V/A(s0) = 12πSEW|Vud|2
s0∫
0

ds
s0

(
1 − s

s0

)2

(39)
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τ ′ = s0 versus the upper integration limit s0.
The points in the upper plot denote OPAL data; the dashed,
dashed-dotted and dotted curves represent the theoretical pre-
dictions of the three theories with the results from the fit to
the moments at s0 = m2

τ used as input. The lower plot shows
the three theories normalized to the data. The three dashed
curves indicate central values and total experimental errors for
CIPT. The dashed-dotted and dotted curves show central val-
ues for FOPT and RCPT. The errors for FOPT and RCPT
are similar to the CIPT errors and omitted from the plot. The
errors on the data are shown as solid lines

×
[(

1 + 2
s

s0

)
ImΠ(1)

V/A(s) + ImΠ(0)
V/A(s)

]
,

obeying the same quadratic suppression of the endpoint
on the real s-axis as Rτ,V/A(m2

τ ). Figure 10 shows the sum
Rτ ′,V(s0)+Rτ ′,A(s0) versus the upper integration limit s0.
The error band for CIPT in the lower plot shows that the
uncertainties increase below s0 ' 1.5 GeV2 compared to
the error in the lower plot of Fig. 7. While the error on
Rτ (s0) is dominated by the uncertainty of the perturba-
tive expansion, the error onRτ ′(s0) originates mainly from
its dependency on the non-perturbative parts. In contrast
to Rτ where these power corrections stay constant for all
s0 (see (11)) they increase with powers of 1/s0 as s0 de-
creases in the case of Rτ ′ . As the errors are large for small
values of s0 little can be said about this region.

12 QCD sum rules

Weighted integrals over the difference of the two measured
spectral functions shown in Fig. 6 can be compared to the
chiral predictions of QCD sum rules as has been done in

[8]:

I1(s0) =
1

4π2

s0∫
0

ds (v(s) − a(s)) = f2
π , (40)

I2(s0) =
1

4π2

s0∫
0

ds s (v(s) − a(s)) = 0, (41)

I3(s0) =
1

4π2

s0∫
0

ds
s

(v(s) − a(s)) = f2
π

〈r2π〉
3

− FA,(42)

I4(s0) =
1

4π2

s0∫
0

ds s ln
s

λ2 (v(s) − a(s))

= −4πf2
π

3α
(
m2

π± −m2
π0

)
. (43)

Here the right hand side of each equation is understood to
be the chiral prediction in the limit s0 → ∞. Equation (40)
is known as the first Weinberg sum rule [55], assuming
that the only scalar contribution is given by the pion pole
which is related to the pion decay constant fπ = (92.4 ±
0.26) MeV [11]. The second Weinberg sum rule [55] is given
in (41). The Das–Mathur–Okubo (DMO) sum rule [56] is
given by (42). Its asymptotic prediction is a function of
the pion decay constant fπ, the mean square of the pion
charge radius 〈r2π〉 = (0.439±0.008) fm2 [57] and the axial-
vector form factor of the pion FA = 0.0058 ± 0.0008 [11]6,
and (43) gives the electromagnetic mass difference of pions
[58]. Note that (43) does not depend on the cut-off value
λ by virtue of the second Weinberg sum rule.

The saturation of these four sum rules is tested taking
into account the full correlations between the measured
spectral functions. The plots of Fig. 11 show the measured
values of the integrals I1-I4 as error bands including all
experimental uncertainties versus the upper integration
limit. The asymptotic predictions are drawn as thin lines
denoting the present ±1σ ranges.

All four sum rules appear to be saturated at the τ -mass
scale within their errors. However, due to the small phase
space near the τ -mass which appears in the denominator
of the spectral functions these errors are very large except
for the DMO sum rule where the 1/s factor suppresses the
high energy tail. The value of (42) at s0 = m2

τ is:

I3(m2
τ ) = (26.3 ± 1.8) · 10−3, (44)

where the error covers all experimental uncertainties.

12.1 Pion polarizability

Assuming that the DMO sum rule shown in Fig. 11 (c)
is already saturated at the τ -mass scale, its value can be
used to predict the electric polarizability of the charged

6 Our definitions of FA and f2
π differ by a factor of 1/2 from

those given in [11]



The OPAL Collaboration: Measurement of the strong coupling constant αs 591

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.5 1 1.5 2 2.5 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.5 1 1.5 2 2.5 3

s0 (GeV2)

I 1(
s 0)

 (
G

eV
2 )

OPAL

(a)

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3

s0 (GeV2)

I 2(
s 0)

 (
G

eV
4 )

OPAL

(b)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.5 1 1.5 2 2.5 3

s0 (GeV2)

I 3(
s 0)

OPAL

(c)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5 3

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5 3

s0 (GeV2)

I 4(
s 0)

 (
G

eV
4 )

OPAL

(d)

Fig. 11a–d. QCD sum rules. Equations (40)–(43) are shown in the plots a–d. Shown are the integrals versus the upper
integration limit as shaded bands. The chiral prediction is given by the lines (±1 σ when two lines are present)

pion as proposed in [59]:

αE =
α

mπ±

( 〈r2π〉
3

− I3
f2

π

)
. (45)

Using the result from the previous section for the DMO
sum rule (44) one gets:

αE = (2.71 ± 0.88) · 10−4 fm3, (46)

which is in good agreement with the value αE = (2.64 ±
0.36) · 10−4 fm3, derived in [59].

13 Summary

Measurements of the spectral functions of the vector cur-
rent and the axial-vector current and their applications in
QCD have been presented. Within the framework of the
Operator Product Expansion, a simultaneous determina-
tion of the strong coupling constant αs and non-perturba-
tive correction terms has been performed. The sum ofRτ,V

and Rτ,A was found to involve a large cancellation of the
non-perturbative terms and thus has been used together
with the τ lifetime and the branching ratio B(τ → µνµντ )
to give a precise measurement of the strong coupling con-
stant. CIPT has led to the value

αs(m2
τ ) = 0.348 ± 0.009exp ± 0.019theo,

at the τ -mass scale and

αs(m2
Z) = 0.1219 ± 0.0010exp ± 0.0017theo

at the Z0-mass scale, where the first error stems from the
experimental uncertainties and the second error originates
from the theoretical uncertainties. The values obtained for
αs(m2

Z) using FOPT or RCPT are 2.3 % and 4.1 % smaller,
respectively.

The total amount of non-perturbative corrections to
Rτ,V (Rτ,A) was found to be (1.6±0.4) % ((−2.3±0.4) %),
while the correction on the sum of Rτ,V and Rτ,A due to
non-perturbative QCD is found to be only (−0.3±0.4) %.
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Here the errors include all experimental and theoretical
uncertainties.

Assuming the validity of the Operator Product Ex-
pansion for energy scales below the τ mass a test of the
‘running’ of the strong coupling between s0 ' 1.3 GeV2

and s0 = m2
τ has been performed. A good agreement be-

tween the predicted ‘running’ from the 4-loop β-function
and the fitted αs values has been observed for CIPT.

The saturation of QCD sum rules at the τ -mass scale
has been tested, yielding a measurement of the pion po-
larizability of αE = (2.71 ± 0.88) · 10−4 fm3 as determined
from the DMO sum rule.
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Comp. Phys. Comm. 76 (1993) 361.
36. R. Brun et al., CERN-DD/EE/84-1 (1989).
37. J. Allison et al., Nucl. Instrum. Methods A317 (1992) 47.
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